ICAN at IODE-XXIV

The IOC Committee on International Oceanographic Data and Information Exchange held its Twenty-fourth Session (IODE-XXIV) at the Renaissance Hotel Kuala Lumpur, Kuala Lumpur, Malaysia between 28 and 31 March 2018.  The IODE Session was attended by 67 participants from 31 IOC Member States and 5 Organizations.  Each IODE project reported progress over the last inter-sessional period. 
 


Group Photo IODE-XXIV, Kuala Lumpur, Malaysia. Marcia Breman, ICAN Steering Group Co-chair, is in the front row fourth person from the left. Lenore Bajona, Data Manager, Ocean Tracking Network, an ADU of the IODE, third person from the left, is a member of COINAtlantic’s Geomatics Working Group


ICAN co-chair Marcia Berman reported progress and highlights on behalf of ICAN.  Most notable was the final transition of the website to the IODE platform (http://ican.iode.org/), the publication of two newsletters, presentations at 10 scientific and international meetings by ICAN members, and the publication of the ICAN-Best Practice Guide to Engage Your CWA User Community (Kopke K. & Dwyer N. (Eds.).(2017). Paris. Intergovernmental Oceanographic Commission of UNESCO (IOC Manuals and Guides 75) 28 pp. (English) (IOC/2016/MG/75)];(OceanDocs: http://hdl.handle.net/1834/9579). 

The Committee welcomed the work achieved by ICAN and the growth of the network; urging relevant organizations and projects to join the ICAN community.  In addition, the Committee reviews requests from all projects for funding for the next intersessional period.  ICAN requested a total of $33,500 USD to support continued web development, expert travel, the development of a searchable coastal web atlas catalogue, and the organisation and execution of ICAN-8 and the biennial face to face ICAN Steering Group Meeting.  The Committee appropriated $24,250 over the next two year cycle; acknowledging the importance of all items identified in the proposed work plan.   

ICAN CWA User Interaction Guide

ICAN is very pleased to announce that "ICAN - Best Practice Guide to Engage your Coastal Web Atlas User Community" is now available as IOC Manuals and Guides No. 75

We have compiled this best practice user interaction guide because successful interactions with potential Coastal Web Atlas (CWA) users during the development of any CWA are as vital for the success of the resource as the continued interaction with existing audiences to ensure longevity and continued use. This hand book is conceived as a practical “cookbook” and was compiled by gathering information from ten atlas developers as well as extracting relevant information from ICAN workshop reports. The information has been summarised and analysed leading to two sets of recommendations, one focused on the development of new atlases and the other focused on how to maintain interactions with audiences of already developed atlases. We hope that the handbook will therefore allow both new and established CWA developers and hosts to benefit from best practice examples as well as learn from experienced challenges, in order to increase capacity to successfully interact with user communities and target audiences, while managing coastal and marine data and information in a user friendly way. The final product is a resource that hopes to complement and link to a variety of OceanTeacher activities, support IODE training in courses, thereby being of value to all who manage and present marine data and information.

National Coastal and Marine Atlas for the South Pacific Zone of Panama

Luz Guerrero Robles
Aquatic Resources Authority of Panama
Ricardo de Ycaza
Ministry of Environment of Panama

The Panamanian Aquatic Resources Authority (ARAP) and the Ministry of Environment of Panama have been involved in the SPINCAM project since 2009 and worked on the basis of measurable indicators over time.

The National Coastal and Marine Atlas for the South Pacific Zone of Panama was generated as a technical and integral information repository, which serves as an instrument to support marine-coastal management and planning initiatives. It was designed under the National Cartographic Base rules at a scale of 1:250,000 whose information is stored in geographic coordinates (WGS 84 Reference System).

The National Coastal and Marine Atlas for the South Pacific Zone of Panama is a basic tool accessible by public managers for the diagnosis, detection of threats, hazards, vulnerability and risks focus towards coastal and marine management and planning. This analysis tool will help to identify the feasible zones of the country for conservation and protection according to technical, environmental and social criteria.

The National Atlas contains a number of coastal indicators related to coastal economy, population density, marine protected areas, coastal concession, population dynamics, water quality, fisheries, coastal ecosystems, all fully sustainable and measurable.


Figure 1. Indicator on Marine Protected Areas: Permanent monitoring through the CCSP

The fisheries indicator, for example, has served as an operational tool in fisheries management for national authorities.

It integrates information on catches, landing and fishing effort to determine the area with the highest concentration of marine coastal species in order to design fishing management strategies based on this indicator.


Figure 2. Fisheries indicator Map


On the other hand, the national atlas also includes a detailed indicator on coastal population density. The distribution of coastal human population indicates that the concentration of almost half of the country’s population inhabits the coastal zones of Panama. This shows the increasing pressures on coastal ecosystems and services which has an amplified effect due to the disordered occupation of the land, therefore, increasing the risk of coastal degradation.

The National Atlas also includes a local pilot project called “The Coastal and Marine Atlas for the Archipelago of Las Perlas”. The Special Management Zone (ZEM) of the Las Perlas Archipelago, located in the district of Balboa, province of Panama, was created with the purpose to protect marine-coastal resources, increase productivity and maintain the biodiversity of their ecosystems, in the neighboring area of the Panama Canal.


Figure 3. Coastal Population Density Map

Thirteen (13) indicators were defined and integrated in the Coastal and Marine Atlas for Las Perlas which will be used to guide local decision makers, communities and other regions of Panama.

Finally, the increasing alteration and degradation towards coastal and marine resources is leading to revaluate community agreements, laws and regulatory framework in order to protect the ecosystems, implementing  the use of the fishing and marine resources considering their limitations, and to work on the concept of Marine spatial planning.


Figure 4: Interactive map from the pilot project for the Las Perlas Archipelago.
Over twenty layers are represented on the map. Only part of the legend is shown
http://geored.maps.arcgis.com/apps/PublicGallery/map.html?appid=1be3830071d74ec98c33147cfc301fac&webmap=a532b3de81ac4576a70aa8a7cefc3f63

New York Geographic Information Gateway - New Fresh Face!

Jeffrey L. Herter
Division of Community Resilience and Regional Programs
Office of Planning & Development
New York Department of State
Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

The Gateway has a new look, come check it out: http://opdgig.dos.ny.gov/index.html#/home The NY Department of State Office of Planning & Development updated the home page of the Geographic Information Gateway (Gateway) to a scrolling format which is more mobile device-friendly. The clean, easy to access interface has all the original functionality of the Gateway, with access to four focus areas on the Great Lakes, Waterfront Revitalization, Atlantic Ocean and Climate Change and Resilience and four developed stories on Submarine Canyons, Offshore Energy, DOS Risk Areas and Living Shorelines.

New Inter-Site Connectivity

A new functionality has been added to some of the mappers within the Submarine Canyon Story http://opdgig.dos.ny.gov/#/storyTemplate/4/1/1 You can now open the data layer(s) being displayed in the story mapper in the Gateway’s main map viewer to allow you to explore other information in relation to the data set being used to illustrate the story.  How can you tell if you can use this functionality?  Just look for a little globe icon in the upper right corner of the interactive mapper…if it’s there you can click on that icon and all the information in the story mapper will be loaded in the main map viewer which will then allow you to add other layers.  It works the other way too!  If you’re in the Gateway’s main map viewer and have a data layer added to the viewer and you see an open book icon in the legend for that data layer, e.g. Main map viewer with Summer Flounder  you can click on the icon and the story mapper where that data is being used as an example will open and allow you to explore the story further.  We will be building this inter-site connectivity into all our stories, so stay tuned for those updates!

Back on Social Media

After a brief hiatus and a little “now you see me now you don’t” action, we have reactivated the Gateway facebook page https://www.facebook.com/informationgateway/ and Twitter account https://twitter.com/NYGateway You can stay up to date with its progress on Facebook and/or by following our Twitter feed. Please like us and share us on fb and retweet!

The Numbers

Sometime during the day on 15 November 2016 visitors exceeded over 1000 hours spent using the Gateway and on 23 November 2016 the Gateway received its first visit from Tunisia bringing the total number of countries to visit from outside the United States to 76.  Notably, the Gateway continues to show steady increases in the quality of visits indicated by increased # of pageviews/month, actions/visit and duration of visits, while the “bounce rate percentage” (folks leaving the site after one action) continues to be in the single digits.

We’ve got more big changes (teaser: like a big data slug for Long Island Sound, increased inter-site connectivity and more focus areas) coming in the next month or so, so stay tuned!

Indigeo: An SDI dedicated to scientific research and observation of the coastal environment

Rouan Mathias, Gourmelon Françoise
CNRS UMR LETG, Institut Universitaire Européen de la Mer, rue Dumont d’Urville, 29280 Plouzané cedex, France
Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo., Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Origin and context

The LETG (http://letg.cnrs.fr) research lab holds a unique position in the scientific landscape of Western France. Not only is it involved in three Earth Science and Astronomy Observatories (in Brest (http://www-iuem.univ-brest.fr/observatoire), Rennes (https://osur.univ-rennes1.fr/) and Nantes (http://www.osuna.univ-nantes.fr/), but also in several national systems for observing the environment (the Zones Ateliers network coordinated by the CNRS; (http://www-iuem.univ-brest.fr/zabri/fr) and Dynalit (http://www.dynalit.fr/fr), the national coastline dynamics observation system). LETG is an environmental geography laboratory that has been developing geomatics expertise for several years now. Right from the early 2000s, it promoted a knowledge engineering approach resulting in the creation of several data catalogues dedicated to the coastal environment. Drawing on this experience, in 2011, the lab designed a joint SDI with the observatories falling within the scope of the project. The aim was to meet the needs of both the laboratory and the Earth Science and Astronomy Observatories in terms of storage, documentation and readily-available data, (primarily geographic and time series) from coastal environment observation.


Figure 1. Example of a graphic display of a high frequency monitoring station measuring hydrological quality in the ‘rade de Brest’ coastal zone. OSU IUEM (http://portail.indigeo.fr/geocms/maps/portail-yzlrxtod)

Services and Technologies

A website (http://indigeo.fr) provides users with a single point of access to Indigeo and the different services offered (metadata catalogue, viewer and OGC web services, Open Geospatial Consortium: http://www.opengeospatial.org/) along with a data entry and publishing guide. The software solution used is geOrchestra (http://www.georchestra.org/). This is an open, interoperable and modular software suite created in 2009 in response to the INSPIRE directive. The success of this solution can be measured by its use. Around twenty different general SDIs use it on a varying scale ranging from national (http://geo.gob.bo/) to local (http://www.data.rennes-metropole.fr/les-donnees/catalogue/). This software suite consists of independent and interoperable modules used to build a customised infrastructure. Three geOrchestra 14.01 modules were installed for Indigeo: a metadata catalogue (geoNetwork), a geo-referenced data server (geoServer) and an advanced map viewer (mapfishapp). Several additional services and tools were developed to meet the needs expressed by scientists. These concern centralised authentication (geoAuth), the generation of dynamic graphics and an intuitive and scalable viewer (geoCMS) enabling, among other aspects, the temporal dimension of certain data to be taken into account. CMS or Content Management System is a term generally used to describe systems used to update websites dynamically.

The metadata catalogue (geoNetwork). Metadata is managed using geoNetwork, a web application developed and updated by an active community which ensures the metadata is made available in standardised and interoperable format. A training session on producing metadata involving fifteen or so geographers and using a test version of Indigeo revealed the complexity of the standard. This led to the creation of simplified metadata models adapted to the main types of geographic information and a data entry guide.

The geo-referenced data server (geoServer). The managed data consists mainly of layers of geographical information in vector format and remote sensing images. The geoServer application enables this data to be stored and shared across data warehouses. Users access data via standardised and interoperable web services that enable available information to be displayed and/or downloaded directly via Indigeo and/or a GIS client (QGIS, ArcGIS®ESRI). geoServer can not only be used to manage access rights to each data warehouse to respect the private or public nature of data, but also to integrate spatial reference databases such as PostGIS, which is highly useful for providing dynamic access to spatio-temporal datasets.

The advanced map viewer (Mapfishapp), supplied with the geOrchestra suite, is similar to a GIS-type application accessed via a web browser. In terms of user-friendliness, it is suited to expert users and offers functions such as the ability to view information layers (OGC flow or files), modify the symbology, submit attribute or spatial queries, export results, edit data and analyse it by incorporating additional modules, and also create maps.

The ‘discover and use’ viewer (geoCMS). This viewer is based on relatively recent technologies (Ruby on Rails, AngularJS and the Leaflet.js library) which improve user-friendliness and offer the possibility of finding and using spatial data (spatio-temporal browsing, graphics viewing and a project approach). On the one hand, this viewer enables information layers to be organised into a catalogue that is managed via an interface reserved for portal administrators (the back end) and, on the other hand, it also allows the content of the data (attribute table or value) to be presented in a customised tooltip displayed when a layer is queried. This customisation is managed using a WYSIWYG editor in the management interface. It enables information to be made accessible to all by adding formatted texts, images, documents or web applications (e.g. dynamic graphics, Fig. 1). geoCMS also automatically identifies spatio-temporal datasets and enables users to browse through this type of dataset by generating a cursor adapted to the time frame (Fig. 2). Lastly, geoCMS has a function enabling users to save maps in folders and organise information layers into coherent groups according to different criteria (e.g. by scientific project or plan) (Fig. 3). Users can easily add these maps into web pages (websites, online articles, blogs, etc.).


Figure 2. Spatio-temporal browsing through the information layer on vessel pathways in the ‘Zone Atelier Brest-Iroise’ area (AIS data, source: Marine Traffic 2013)

Standards

Indigeo adheres to several standards:

  • For describing and searching for metadata (INSPIRE Discovery Services), the international ISO 19115 standard on defining metadata for geographic information as well as the ISO 19110 standard on feature cataloguing (attribute tables) and the ISO 19139 standard on describing XML implementation schemas.

  • For querying and harvesting metadata, the Catalogue Service for the Web (CSW) standard.

  • For viewing data (INSPIRE View Service), the OGC standard, but also, and above all, the Web Map Service (WMS) standard.

  • For downloading data (INSPIRE Download Service), the OGC Web Feature Service (WFS) standard for vector data and the Web Coverage Service (WCS) standard for raster data.

 
Figure 3. All the maps (Web Map Context) from the COCORISCO project on coastal hazards: http://portail.indigeo.fr/geocms/projects/cocorisco

Human resources and communities

In terms of human resources, Indigeo is currently supported by a local technical team (five cartographers, three data administrators, two system administrators and the service provider) which is in contact with other technical teams involved in setting up scientific SDIs in Western France. Indigeo users include producers of spatial information (42 producers from 13 environmental science laboratories), and other users who, in some cases, may also be producers. A total of 5,500 visits to the http://indigeo.fr website was recorded between June 2013 and 6 April 2016. This website provides users with a single point of access to the SDI’s tools, viewers, catalogue and web services.

Spatial information

Indigeo currently provides access to 534 metadata files, 551 information layers (vector and raster) and seven time series sourced from databases (Table 1). All catalogued data is open access and 83% of the information content comes from one laboratory (LETG). The rest is produced by other laboratories related to different observatories.

In addition to the data stored in it, Indigeo provides viewing access to more than 6,500 information layers thanks to the harvesting of fifteen or so French thematic or general SDIs.

Table 1. Types, formats and quantity of data units made available

Vector 

Raster 

Database 

Shape: 289  ImageMosaic: 140  PostgreSQL: 6 
PostGIS: 15  Geotiff: 93  MySQL: 1 
  Arcgrid: 67   
  ECW: 1   

 

Development perspectives

In terms of development, several projects are currently underway including the desire to further improve interoperability with the OGC standardisation of time series and sensor data (Sensor Observation Service) as well as online data processing (Web Processing Service).

Additionally, to make accessing the different services offered by the SDI easier, authentication via the RENATER education-research identity federation is about to go into service. Lastly, the option of adding trackers to collect statistics about visits to the website is currently under consideration.

Conclusion

Indigeo has been up and running since 2013. The first version benefited from the geOrchestra software suite and geoCMS’s advanced functions. The iterative approach taken led to a platform that offered a broad range of services, but was not necessarily very user friendly (in terms of viewing or entering data into the catalogue). For example, thematic portals generated by geoCMS made both browsing through and managing data more complicated. This function was subsequently removed in the second version of Indigeo which put an emphasis on simplicity and took a user-centric approach to browsing. The aim was to encourage consumers of spatial information to move towards becoming ‘producers’ (Budhathoki et al 2008). However, the profile of Indigeo contributors has been relatively consistent since the beginning. Users adding to the catalogue have mainly consisted of a small group of geographers with knowledge in the field of GIS. Nevertheless, generating standardised metadata is still regarded as too complex, even for this well-informed public. This largely explains why there is such a low number of producers from other disciplines who are unfamiliar with the field. This small number is also probably due to the tool’s ‘laboratory’ origins. For reasons linked to presenting and exploiting data, it seems logical that developing interoperable SDIs at different academic levels would be the right solution. It would encourage the public concerned to appropriate SDIs and break down some of the power-based barriers within the scientific realm.

References

  • Budhathoki N., Bruce B., Nedovic-Budic Z., 2008. Reconceptualizing the role of the user of spatial data infrastucture. GeoJournal, 72(3), p. 149-160
     

Vol, 8, Nr 2 - Now Available!

We are now entering our 9th year publishing the ICAN newsletter. Many thanks to our Editor Andy Sherin!

Please consider preparing an article for the next newsletter that will likely be published in the spring of this year.

Happy New Year!

Photos from CoastGIS 2018

Our friends from CoastGIS 2018 have posted a wonderful gallery of photos, including the recent ICAN mini-workshop:

See how many ICAN members you can spot!